Assessment of Pollock in SA 5&6

By

R.K. Mayo, L.Col and M. Traver NMFSC

Groundfish Assessment Review Meeting Woods Hole, MA

August 4-8, 2008

[&]quot;This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to represent any final agency determination or policy."

1.0 Background

Pollock, *Pollachius virens* (L.) have traditionally been assessed as a unit stock from the Scotian Shelf (NAFO Divisions 4VWX) to Georges Bank, the Gulf of Maine and portions of the Mid-Atlantic region (Subareas 5 and 6). This stock was last assessed over its range *via* VPA at SAW 16 in 1993 (Mayo and Figuerido 1993, NEFSC 1993a, 1993b). At that time, spawning stock biomass had been declining since the mid-1980s, and was expected to reach its long-term average (144,000 mt). Fishing mortality was estimated to be 0.72 in 1992, above F20% (0.65) and well above Fmed (0.47). The stock was then considered to be fully exploited and at a medium biomass level.

The state of this stock was first evaluated *via* index assessment in 2000 (Mayo 2001). At that time, it was noted that biomass indices for the Gulf of Maine-Georges Bank portion of the stock, derived from NEFSC autumn bottom trawl surveys, had increased during the mid-1970s, declined sharply during the 1980s, but have been generally increasing since the mid-1990s. Indices derived from Canadian bottom trawl surveys, conducted on the Scotian Shelf, increased during the 1980s, but declined sharply during the early 1990s. The index assessment provided no basis with which to evaluate the state of the stock relative to the control rule as determined by the Overfishing Definition Review Panel (Anon. 1998).

In 2002, index-based biological reference points were developed for a portion of the pollock stock primarily under US management jurisdiction (Subareas 5 and 6), including a portion of eastern Georges Bank (Subdivision 5Zc) that is under Canadian management jurisdiction (NEFSC 2002). The most recent assessment of the resource inhabiting the area comprising this management unit was conducted in August, 2005 at the Second Groundfish Assessment Review Meeting (GARM II) (NEFSC 2005). At that time it was determined that the index of current biomass was greater than ½ of the Bmsy proxy reference point and that the index of current F was below the Fmsy proxy reference point (Mayo et al. 2005).

2.0 The Fishery

Since 1984, the USA fishery has been restricted to areas of the Gulf of Maine and Georges Bank west of the line delimiting the USA and Canadian fishery zones. The Canadian fishery occurs primarily on the Scotian Shelf and additional landings are obtained from Georges Bank east of the line delimiting the USA and Canadian fishery zones. This fishery on the Scotian Shelf has shifted westward over time and the contribution to the total catch from larger, mobile gear vessels has steadily diminished since 1981.

Commercial landings: Commercial landings from the USA portion of the fishery in SA 5&6 were updated through 2007 (Table M1). Revised Canadian landings from Divs. 5Y and 5Z were also included through 2007. There was no need to apply the preferred allocation scheme reviewed at the GARMIII Data Meeting, October, 2007 as pollock are assessed as a unit stock.

The commercial fishery in Subareas 5&6 is dominated by United States vessels; additional catches are taken by Canada and, for a period primarily during the 1970s, by some distant water fleets. The total landings increased steadily from less than 10,000 mt during the 1960s to a maximum of over 26,000 mt in 1986(Table M1). Landings declined sharply during the late 1980s and have remained below 10,000 mt throughout most of the 1990s. Landings since 1994 have fluctuated between 4,420 and 9,346 mt.

Commercial Biological Samples: Length and age samples continue to be collected from the USA and Canadian fisheries. For this assessment of the SA5&6 portion of the stock, length and age data have not been utilized since the 1992 assessment of the entire Divs 4VWX and SA 5&6 stock (Mayo and Figuerido 1993, NEFSC 1993a, 1993b).

Commercial Discards: The extent of discarding in the commercial fishery has not been investigated to date.

Recreational Landings: USA Recreational landings are available in the MRFSS database (Table M2), and have been included in one formulation of this assessment. Annual catches of pollock from the recreational fishery in Subareas 5&6, excluding those caught and released alive, have fluctuated between 52 and 819 mt. In most years the total catch remained below 400 mt.

3.0 Research Survey Indices

Indices of relative biomass (In re-transformed), derived from NEFSC autumn research vessel bottom trawl surveys covering Georges Bank and the Gulf of Maine have varied considerably since 1963 (Table M2, Figure M2). Indices generally fluctuated between 2 and 5 kg per tow throughout most of the 1960s and 1970s, peaking at over 8 kg per tow during the mid-to-late 1970s, reflecting recruitment of several moderate-to strong year classes from the early 1970s. Biomass indices declined rapidly during the early 1980s, and continued to decline steadily through the early 1990s, remaining below 1 kg per tow and reaching a minimum during the mid-1990s. Since then, biomass indices from the Gulf of Maine-Georges Bank region have generally increased, reaching 1.5 kg per tow in 1999 and have recently been fluctuating between 2 and 2.5 kg/tow (Table M3). The most recent biomass indices declined below 1.0 in 2006 and 2007.

For the purpose of this assessment, the kg/tow indices were raised to minimum swept area biomass. For the pollock stock, the total area of the included strata (A) is 36,352 sq mi. The footprint of a standard survey tow (a) is 0.0112 sq mi and the resulting raising factor (A/a) is 3,245,714 to derive minimum biomass (in kg) and 3,245.714 (in mt). This change affects the magnitude of the current status measures and reference points determined by the assessment.

4.0 Assessment

Input Data and Model Formulation

An index of relative exploitation (catch/survey biomass index) corresponding to a replacement ratio of 1.0 was developed by the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (NEFSC 2002) for the portion of the unit stock of pollock in NAFO Subareas 5&6 based on the AIM (An Index Method) model. This model was employed again for the present assessment. Autumn NEFSC swept area survey biomass indices from the Gulf of Maine and Georges Bank region from 1963 through 2007 were used to calculate the replacement ratios, defined as the biomass index in the current year divided by the average biomass indices from the previous 5 years.

Swept area survey biomass indices and total landings were used to compute the relative exploitation rates, defined as the catch in the current year divided by the 3 year average survey biomass index for the current year and the previous and following years. These relative

exploitation rates (or relative F) may be considered a proxy for F on that portion of the pollock stock considered in this analysis. The relationship between replacement ratios and relative F was evaluated by a linear regression of the Log_e replacement ratio on Log_e relative F and the results were used to derive an estimate of relative F corresponding to a replacement ratio of 1.0. A complete description of the AIM model can be found in NEFSC (2002).

Assessment Results

As evident from recent trends in total landings from Subareas 5 and 6 and NEFSC autumn biomass indices calculated for the Gulf of Maine-Georges Bank region, relative Fs (landings/NEFSC autumn biomass index) peaked in the mid-1980s to mid-1990s, after which they steadily declined (Table M4 Figure M3). Biomass indices from the Gulf of Maine-Georges Bank region have been increasing throughout the late 1990s and now indicate that biomass may have returned to levels evident during the early 1980s.

Trends in 3 year average relative F (exploitation ratio) and replacement ratios are given in Figures M3 and M4, respectively. Prior to the 1980s, a high proportion of the replacement ratios equaled or exceeded 1.0 (Figure M4). During the 1980s and early 1990s, most of the replacement ratios were less than 1.0, with ratios greater than 1.0 appearing again by the late 1990s as the biomass indices began to gradually increase from the very low levels of the mid-1990s. However, in 2006 and 2007, the replacement ratios were substantially below 1.0.

The information displayed in Table M4 also provides a means to derive a biomass index which relates to the replacement ratios. In this case, it is evident that most of the replacement ratios below 1.0 occurred during the 1980s when all of the biomass indices during this period were below 2.0 kg/tow (Table M4). During this period the relative Fs were also well above the relative replacement F (Figure M5). This biomass index may be considered as the biomass proxy for Bmsy that corresponds to the relative F proxy for Fmsy. This value remains unchanged in the present assessment compared to the value obtained in 2002 (NEFSC 2002).

5.0 Biological Reference Points

A regression of Log_e replacement ratios on Log_e relative F was significant (p=0.03, Table M5). The replacement relative F based on this regression equals 1.74 (Table M5, Figure M5). This can be taken as a proxy for Fmsy.

The biological reference points first developed by the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (NEFSC 2002) are:

 $\begin{array}{ll} Bmsy & 3.00 \text{ kg/tow} \\ F_{msy} & 5.88 \text{ (Relative F)} \\ MSY & 17,640 \text{ mt} \end{array}$

Since the relative F relates the catch directly to survey biomass, the catch corresponding to the Bmsy proxy can be estimated by multiplying the relative F and the biomass index of Bmsy.

The following biological reference point proxies were obtained from the index-based AIM model that included commercial and recreational landings. The first set was obtained at the GARMIII

Biological Reference Point meeting in April, 2008 based on survey kg/tow indices. The second set is from this meeting using the raised swept are biomass indices.

BRP N	Meeting (April, 2008)	This Meeting
<u>kg</u> /	tow units	Swept area biomass units
$\mathbf{B}_{\mathrm{msy}}$	2.00 kg/tow	Bmsy 6,491 mt
F_{msy}	5.758 (Relative F)	Fmsy 1.74 (Relative F)
MSY	11,516 mt	MSY 11,294 mt

The proxy Bmsy and Fmsy reference points are given in Table M6 along with corresponding estimates of current (2007) biomass and F proxies.

6.0 Projections

The AIM software was also used to conduct short-term projections of 2009 catches under 3 scenarios of F in 2009 (Fstatusquo, Fmsy and Frebuild).

Frebuild

Although pollock are not in a rebuilding plan based on the results of the GARMII assessment, the 2007 status shows that biomass is currently below ½ Bmsy. A 10 year projection was run to obtain an estimate of the relative F required to rebuild biomass to Bmsy by 2017. The relative Frebuild determined from this projection is 1.74. Results from these projections are given in Table M7

2009 ACLs

Annual Catch limits were determined for 2009 under the 3 scenarios of 2009 F as described above. Results are as follows: Fstatusquo: 4,922 mt, Fmsy: 4,850 mt, Frebuild: 4,832 mt. Further details are given in Table M7.

7.0 Summary

Since the mid-1990s, the NEFSC autumn survey biomass had been increasing towards the current 6,491 minim swept area biomass Bmsy proxy. However, the biomass index declined substantially in 2006 and 2007 below 3,200 mt. Between 1999 and 2006, the relative F remained below the Fmsy proxy, but the 2007 value increased to more than twice Bmsy. Replacement ratio remained close to or above 1.0 between 1996 and 2005, but then declined to less than 0.5 in 2006 and 2007. The provisional set of biological reference points, based on the AIM model approach, including commercial and recreational landings are: Fmsy proxy (relative F) = 1.74 Bmsy proxy = 6,491 mt (NEFSC Autumn RV survey) and MSY = 11,294 mt. Based on these results, the stock is overfished and overfishing is occurring.

8.0 Panel Discussion/Comments

9.0 References

- Anon. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. Final Report. Overfishing Definition Review Panel. June 17, 1998.
- Mayo, R.K. 2001. Scotian Shelf/Georges Bank/Gulf of Maine Pollock. In: Assessment of 19 Northeast Groundfish Stocks through 2000. Northern and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. NMFS, Northeast Fisheries Science Center Reference Document 01-20, 217p.
- Mayo, R.K. and B.F. Figuerido. 1993. Assessment of Pollock, *Pollachius virens* (L.), in Divisions 4VWX and Subareas 5 and 6, 1993. NMFS, Northeast Fisheries Science Center Reference Document 93-13, 108 p.
- Mayo, R.K, L. Col and M. Traver. 2005. Georges Bank/Gulf of Maine Pollock. In: Assessment of 19 Groundfish Stocks through 2004. 2005 Groundfish Assessment Review Meeting (GARM II), Northeast Fisheries Science Center Reference Document 05-13.
- NEFSC 1993a. Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS, Northeast Fisheries Science Center Reference Document 93-18, 118 p.
- NEFSC 1993b. Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW). The Plenary. NMFS, Northeast Fisheries Science Center Reference Document 93-19, 57p.
- NEFSC 2002. Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish, NMFS, Northeast Fisheries Science Center Reference Document 02-04, 254 p.
- NEFSC 2005. Assessment of 19 Northeast Groundfish Stocks Through 2004. 2005 Groundfish Assessment Review Meeting (2005 GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts, 15-19 August, 2005. by R.K. Mayo and M Terceiro, editors. (NEFSC Reference Document 05-13).

Table M1. Commercial landings (mt) of pollock from SA5&6 by USA, Canadian and DWF fleets and NEFSC autumn bottom trawl survey biomass indices (kg/tow and swept area minimum biomass indices).

minimum	biomass indic	· ·			LICA	Othor	LICA	Othor
Year	Autumn	Autumn Swept	Total 5&6	000s	USA 5&6	Other 5&6	USA 5&6	Other 5&6
i c ai	Biom Index	Area Biomass	Landings(mt)	mt	Landings	Landings	Percent	Percent
1960	Dioin index	Alea Diomass	10397	10.397	8186	2211	78.7	21.3
1961			8219	8.219	7861	358	95.6	4.4
1962			6151	6.151	5550	601	90.2	9.8
1963	4.939	16030.58	6241	6.241	4673	1568	74.9	25.1
1964	2.716	8815.36	9008	9.008	4768	4240	52.9	47.1
1965	2.362	7666.38	9000	9.000	4916	4084	54.6	45.4
1966	1.795	5826.06	9847	9.847	3171	6676	32.2	67.8
1967	1.793	4251.89	8534	8.534	2784	5750	32.2	67.4
1968	2.654	8614.13	5222	5.222	2981	2241	57.1	42.9
1969	3.424	11113.33	9822	9.822	3507	6315	35.7	64.3
1970	1.699	5514.47	11976	11.976	3592	8384	30.0	70.0
1970	2.189	7104.87	15203	15.203	4732	10471	31.1	68.9
1971	3.279	10642.70	13013	13.203	5243	7770	40.3	59.7
1972	4.037	13102.95	13076	13.013	5731	7345	43.8	56.2
	4.03 <i>1</i> 1.542	5004.89				4343		35.0
1974	1.494		12393	12.393	8050		65.0	
1975		4849.10	13871	13.871	8577	5294	61.8	38.2
1976	8.567	27806.03	13382	13.382	10244 12729	3138	76.6	23.4
1977	5.628	18266.88	16273	16.273		3544	78.2	21.8
1978	3.862	12534.95	22305	22.305	17545	4760	78.7	21.3
1979	4.074	13223.04	18452	18.452	15420	3032	83.6	16.4
1980	2.647	8591.41	23539	23.539	17905	5634	76.1	23.9
1981	1.083	3515.11	22068	22.068	18018	4050	81.6	18.4
1982	1.364	4427.15	19466	19.466	14092	5374	72.4	27.6
1983	1.274	4135.04	17816	17.816	13433	4383	75.4	24.6
1984	0.564	1830.58	20633	20.633	17343	3290	84.1	15.9
1985	1.742	5654.03	21069	21.069	19305	1764	91.6	8.4
1986	1.089	3534.58	26507	26.507	24316	2191	91.7	8.3
1987	1.223	3969.51	23467	23.467	20251	3216	86.3	13.7
1988	1.787	5800.09	17648	17.648	14900	2748	84.4	15.6
1989	0.619	2009.10	12434	12.434	10518	1916	84.6	15.4
1990	0.994	3226.24	11518	11.518	9432	2086	81.9	18.1
1991	0.649	2106.47	10053	10.053	7882	2171	78.4	21.6
1992	0.910	2953.60	10671	10.671	7192	3479	67.4	32.6
1993	0.505	1639.09	10238	10.238	5676	4562	55.4	44.6
1994	0.328	1064.59	7332	7.332	3769	3563	51.4	48.6
1995	0.504	1635.84	4611	4.611	3358	1253	72.8	27.2
1996	0.654	2122.70	4420	4.420	2963	1457	67.0	33.0
1997	1.003	3255.45	5794	5.794	4252	1542	73.4	26.6
1998	0.772	2505.69	7865	7.865	5583	2282	71.0	29.0
1999	1.532	4972.43	5726	5.726	4595	1131	80.2	19.8
2000	0.844	2739.38	5376	5.376	4043	1333	75.2	24.8
2001	2.448	7945.51	5784	5.784	4111	1673	71.1	28.9
2002	1.855	6020.80	5354	5.354	3580	1774	66.9	33.1
2003	2.197	7130.83	6735	6.735	4794	1941	71.2	28.8
2004	1.925	6248.00	7254	7.254	5070	2184	69.9	30.1
2005	2.533	8221.39	8358	8.358	6510	1848	77.9	22.1
2006	0.959	3112.64	7043	7.043	6067	976	86.1	13.9
2007	0.754	2447.27	9017	9.017	8370	647	92.8	7.2

Table M2. Recreational catch of pollock from SA5&6.

	Total Catch of Po	llock (Including	Released Alive)	Alive)	01.1 01100K (E)	tordaming intorcacous	•	
Year	Numbers	,	Weight	Numbers		Weight		AB1 Avg
	(000s)	SE	(mt)	(000s)	SE	(mt)	SE	Wgt (kg)
1981	2226.624	12.2	1158.963	1444.987	13.3	752.119	13.5	0.520502
1982	1539.039	16.9	1573.219	800.907	15	818.694	15.5	1.022209
1983	971.096	18.4	1313.407	429.476	20	580.866	20	1.352499
1984	508.016	22.2	179.5818	324.49	32.1	114.706	32.1	0.353496
1985	1491.151	35.2	317.1506	1217.767	42.5	259.005	42.8	0.212688
1986	522.937	20.2	177.1421	421.769	24	142.872	24.6	0.338745
1987	670.942	22.5	302.8073	255.847	19.8	115.468	20.3	0.451317
1988	1266.767	47.5	572.7964	369.793	19.2	167.21	19.9	0.452172
1989	602.586	18.1	495.5234	315.064	17.1	259.086	16.1	0.822328
1990	352.358	19	270.9374	201.94	30.9	155.277	31.6	0.768926
1991	440.764	35.9	389.2567	113.179	17.6	99.953	18.8	0.883141
1992	167.569	15.3	96.78733	85.738	21.2	49.522	22.7	0.577597
1993	396.704	15.3	109.7715	187.381	19.1	51.85	20.2	0.276709
1994	861.982	20.2	455.0012	479.202	29.2	252.949	29.5	0.527855
1995	806.888	28.4	760.9678	261.394	31.8	246.518	32	0.94309
1996	464.625	18.2	562.4352	280.171	25.3	339.151	25.6	1.210514
1997	284.892	17	368.364	151.825	28.9	196.309	29	1.292995
1998	452.361	10.3	314.1495	184.906	17.7	128.411	17.8	0.694466
1999	562.123	13.5	230.3734	217.516	26.4	89.144	26.4	0.409827
2000	1075.624	9.7	976.4788	436.617	15.9	396.372	15.9	0.907825
2001	1058.024	7.6	1920.753	355.713	11.6	645.767	11.6	1.815416
2002	496.294	14.4	791.9331	239.175	15.8	381.65	15.8	1.595694
2003	356.07	15.2	210.058	158.465	17.2	93.484	17.2	0.589935
2004	307.629	13.7	354.2347	223.697	16.8	257.587	16.8	1.1515
2005	254.132	12.5	533.5437	156.804	13.8	329.206	13.8	2.099475
2006	278.236	15	551.5738	175.068	20.8	347.054	20.9	1.982395
2007	239.035	15.3	568.3184	161.172	20.8	383.195	18	2.377553

Retained Catch of Pollock (Excluding Released

Table M3. Stratified mean catch per tow in weight (kg) and numbers for Scotian Shelf, Gulf of Maine, and Georges Bank pollock in NEFSC offshore spring and autumn bottom trawl surveys¹, 1963-2007³. Indices for the total stock and the mature component are listed.

			N	IEFSC Sp	orina Su	rvev²	, , ,				N	EFSC A	utumn S	Survev		
	Total B	Biomass					Mature	Numbers	Total	Biomass		Biomass			Mature	Numbers
	Linear F	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans
1963	-	-	-	_	-	_	-	_	5.502	4.939	5.164	4.636	1.401	1.289	1.113	1.024
1964	-	-	-	-	-	-	-	-	4.755	2.716	4.092	2.337	1.770	1.136	0.975	0.626
1965	-	-	-	-	-	-	-	-	2.977	2.362	2.657	2.108	0.903	0.847	0.555	0.521
1966	-	-	-	-	-	-	-	-	2.567	1.795	2.003	1.401	1.060	0.637	0.488	0.293
1967	-	-	-	-	-	-	-	-	1.973	1.310	1.809	1.201	0.560	0.478	0.391	0.334
1968	4.537	2.876	4.292	2.721	1.121	0.932	0.677	0.563	3.494	2.654	3.343	2.539	0.758	0.696	0.569	0.522
1969	2.723	2.584	2.404	2.281	1.157	1.014	0.519	0.455	7.208	3.424	6.994	3.322	1.395	0.884	1.248	0.791
1970	5.295	3.920	4.928	3.648	1.659	1.449	0.994	0.868	2.251	1.699	2.082	1.571	0.609	0.588	0.377	0.364
1971	3.474	2.831	3.266	2.661	0.973	0.897	0.593	0.547	4.365	2.189	3.833	1.922	1.201	0.778	0.612	0.396
1972	5.003	3.618	4.051	2.930	3.871	2.140	0.867	0.479	4.589	3.279	4.079	2.915	1.448	1.174	0.733	0.594
1973	4.927	3.835	3.508	2.731	4.329	1.710	1.018	0.402	4.683	4.037	4.382	3.778	1.267	1.106	0.865	0.755
1974	3.951	4.157	3.553	3.738	1.344	1.176	0.755	0.661	3.332	1.542	2.912	1.348	0.953	0.576	0.654	0.395
1975	5.919	5.580	5.409	5.099	1.621	1.298	1.014	0.812	2.087	1.494	1.905	1.364	0.718	0.493	0.381	0.262
1976	7.204	7.490	6.798	7.068	1.612	1.483	1.227	1.129	18.261	8.567	17.406	8.166	4.038	1.895	3.674	1.724
1977	3.591	3.295	3.205	2.941	1.717	1.318	0.882	0.677	9.376	5.628	8.789	5.276	2.272	1.303	1.739	0.997
1978	5.130	3.107	4.272	2.587	1.898	0.835	1.091	0.480	6.275	3.862	6.033	3.713	1.064	0.723	0.790	0.537
1979	4.585	3.750	4.348	3.556	1.036	0.939	0.785	0.712	4.770	4.074	4.504	3.847	0.865	0.719	0.718	0.597
1980	4.191	3.531	3.711	3.127	1.451	1.069	0.987	0.727	3.298	2.647	3.202	2.570	0.580	0.544	0.470	0.441
1981	5.749	5.391	5.415	5.078	1.395	1.221	0.989	0.866	2.683	1.083	2.178	0.879	1.033	0.341	0.672	0.222
1982	6.372	3.349	5.839	3.069	3.755	1.767	2.076	0.977	2.118	1.364	1.966	1.266	0.759	0.574	0.493	0.373
1983	1.592	1.018	1.533	0.980	0.897	0.662	0.251	0.185	2.989	1.274	2.834	1.208	0.976	0.579	0.479	0.284
1984	3.119	2.298	3.002	2.212	1.084	0.914	0.688	0.580	0.909	0.564	0.778	0.483	0.421	0.367	0.188	0.164
1985	29.132	8.446	26.404	7.655	14.587		12.014			1.742		1.545	1.080	0.708	0.454	0.298
1986	8.256	4.283	8.123	4.214		1.333		1.139		1.089	1.466		0.898	0.571	0.528	0.336
1987		1.870	2.510	1.690	1.616	0.738	0.599	0.274	2.035			1.156	0.597	0.506	0.383	0.325
1988		1.384	1.950	1.339	0.907	0.758	0.339	0.283		1.787	12.088		3.754	0.869	3.131	0.725
1989	5.216	2.156	5.041	2.084	1.998	1.024	1.577	0.808	1.223		0.723		1.883	0.771	0.461	0.189
1990		1.165	1.675	1.072	0.760	0.560	0.442	0.326	2.079		1.888		0.823	0.586	0.502	0.357
1991	5.051		4.738	2.624		1.399		1.070	1.055		0.851		0.728	0.535	0.409	0.301
1992	3.349	2.166	3.139	2.030	1.787		0.755	0.525	1.697		1.507		1.051	0.643	0.520	0.318
1993		1.248	1.358	1.058	1.648	1.163	0.534		0.769		0.570		1.043	0.567	0.195	0.106
1994	1.065	0.840	0.972	0.767	0.562	0.504	0.380	0.341	0.603		0.500		0.422	0.311	0.270	0.199
1995		1.307	2.659	0.935	3.432	0.820	1.984		1.017		0.787		0.840	0.465	0.516	0.286
1996	1.080	0.758	1.023	0.718	0.650	0.510	0.342	0.268	1.060		0.862		1.009	0.666	0.435	0.287
1997	4.573	2.060	3.866	1.742		1.802		0.906	1.512		1.095		1.766	0.921	0.611	0.319
1998		1.564	2.139	1.266		1.506	0.900	0.520	1.308		0.860		2.104	0.748	0.539	0.192
1999	1.069	0.862	0.745	0.601		1.022		0.198	3.099		2.595		2.414		1.161	0.670
2000	1.369	0.997	1.222	0.890	1.502		0.434	0.281	1.441		0.522		2.770	1.333	0.583	0.278
2001		1.275	1.854			1.272	0.728	0.547	3.567		3.067		2.385			1.033
2002	1.578	1.247	1.475		0.760	0.630	0.482	0.400	5.920		5.420		3.135		2.305	1.073
2003	0.890	0.667	0.731	0.548	1.439	0.734	0.242	0.123		2.197		1.754	7.363	2.043	4.790	1.329
2004	0.744		0.703	0.553		0.380	0.180	0.140	4.206		3.440		3.221		2.122	0.919
2005	5.620	2.377	5.459			1.235	1.588	0.973	7.415			2.223	4.769	1.636	2.700	0.926
2006	2.589	1.493	2.534			0.758	0.766	0.597	1.856		1.578		1.591	0.568	0.574	0.205
2007	4.671	2.655	4.466	2.538	1.988	1.423	1.425	0.805	1.394	0.754	1.314	0.711	0.607	0.438	0.404	0.292

¹ NEFSC Strata 01130-01300, 01330-01340, 01360-01400.

² The "36 Yankee" trawl was used from 1970-1972, and 1982-2002; the "41 Yankee" trawl was used from 1973-1981.

No gear conversion factors are available to adjust for differences in fishing power.

³ BMV oval doors were used from 1970-1984; since 1985 Portuguese polyvalent doors have been used. No door conversion factors were applied. Surveys performed using R/V Albatross IV and R/V Delaware II; No vessel conversion factors were applied.

Table M4. Assessment measures used to evaluate the SA 5&6 component of the pollock stock Landings include recreational harvest.

				Relative	
	Autumn	Swept Area	Landings	F	Replacement
Year	Kg/tow	Biomass (mt)	(mt)		Ratio
Factor		3245.71			
1963	4.939	16030.58	6241	0.502	
1964	2.716	8815.36	9008	0.831	
1965	2.362	7666.38	9000	1.210	
1966	1.795	5826.06	9847	1.665	
1967	1.31	4251.89	8534	1.370	
1968	2.654	8614.13	5222	0.653	1.011
1969	3.424	11113.33	9822	1.167	1.580
1970	1.699	5514.47	11976	1.514	0.736
1971	2.189	7104.87	15203	1.961	1.006
1972	3.279	10642.70	13013	1.265	1.454
1973	4.037	13102.95	13076	1.364	1.524
1974	1.542	5004.89	12393	1.620	0.527
1975	1.494	4849.10	13871	1.105	0.586
1976	8.567	27806.03	13382	0.788	3.416
1977	5.628	18266.88	16273	0.833	1.487
1978	3.862	12534.95	22305	1.520	0.908
1979	4.074	13223.04	18452	1.612	0.966
1980	2.647	8591.41	23539	2.788	0.560
1981	1.083	3515.11	22820	4.141	0.219
1982	1.364	4427.15	20285	5.039	0.394
1983	1.274	4135.04	18397	5.311	0.489
1984	0.564	1830.58	20748	5.357	0.270
1985	1.742	5654.03	21328	5.807	1.256
1986	1.089	3534.58	26650	6.076	0.903
1987	1.223	3969.51	23583	5.318	1.014
1988	1.787	5800.09	17815	4.537	1.516
1989	0.619	2009.10	12693	3.451	0.483
1990	0.994	3226.24	11674	4.770	0.769
1991	0.649	2106.47	10153	3.676	0.568
1992	0.91	2953.60	10721	4.801	0.863
1993	0.505	1639.09	10290	5.457	0.509
1994	0.328	1064.59	7585	5.244	0.446
1995	0.504	1635.84	4858	3.022	0.744
1996	0.654	2122.70	4759	2.036	1.129
1997	1.003	3255.45	5991	2.280	1.729
1998	0.772	2505.69	7994	2.234	1.289
1999	1.532	4972.43	5815	1.707	2.349
2000	0.844	2739.38	5772	1.106	0.945
2001	2.448	7945.51	6430	1.155	2.547
2002	1.855	6020.80	5735	0.816	1.406
2003	2.197	7130.83	6829	1.056	1.474
2004	1.925	6248.00	7512	1.043	1.084
2005	2.533	8221.39	8687	1.482	1.366
2006	0.959	3112.64	7390	1.609	0.438
2007	0.754	2447.27	9400	3.381	0.398

Table M5. AIM model estimates of the Fmsy proxy and NEFSC autumn catchability coefficient (q), and the probability value for the randomization test for Pollock in Subareas 5 and 6.

	Point Estimate (90 % CI)	Bootstrap Mean
Fmsy proxy	1.74 (1.19 – 2.29)	1.74
NEFSC Autumn survey q (SE)	0.489 ((0.121)	
Randomization test p value	0.03	

Table M6. Biological reference point estimates and 2007 stock status for Pollock in Subareas 5 and 6.

 2007	
Relative F	Fmsy proxy
3.38	1.74
2007 Minimum Biomass Index	Bmsy proxy
2447 mt	6491 mt

Table M7. Projections of catch and minimum population biomass in 2009 under 3 relative F scenarios in 2009.

20	008			2009
Catch Po	inimum opulation omass (mt)	Relative F (2009)	Catch (mt)	Minimum Population Biomass (mt)
4,843	2,012 2,784 3,026	Fsq (3.38) Fmsy (1.74) Frebuild (1.47)	4,922 4,850 4,832	1,456 2,787 3,294

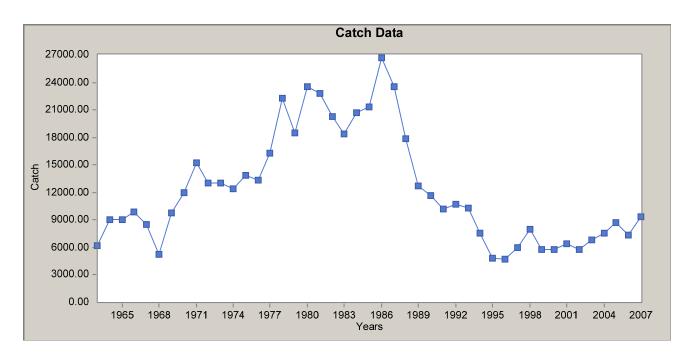


Figure M1. Total commercial and recreational landings (mt) of pollock from SA 5&6.

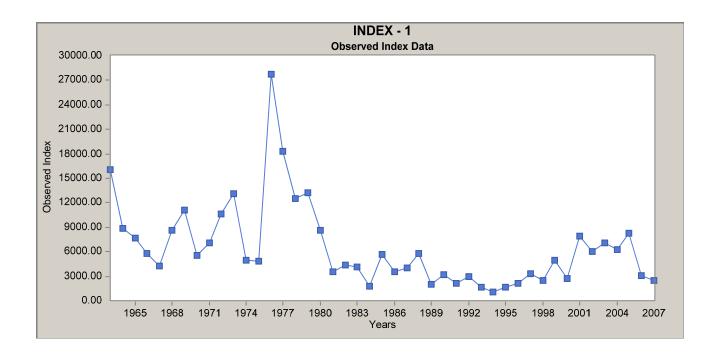


Figure M2. Minimum swept area biomass (mt) index for pollock from the NEFSC autumn bottom trawl surveys.

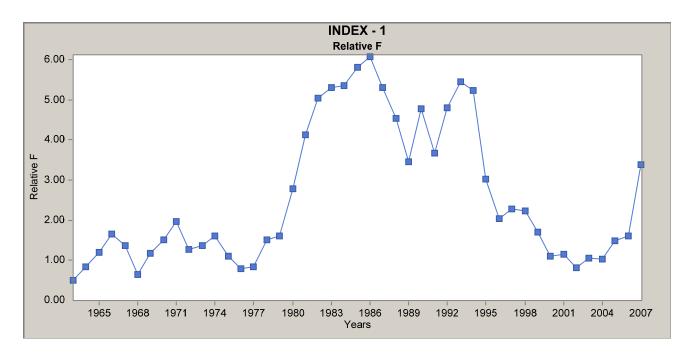


Figure M3. Average relative F(commercial and recreational landings/biomass index) for pollock in SA 5&6.

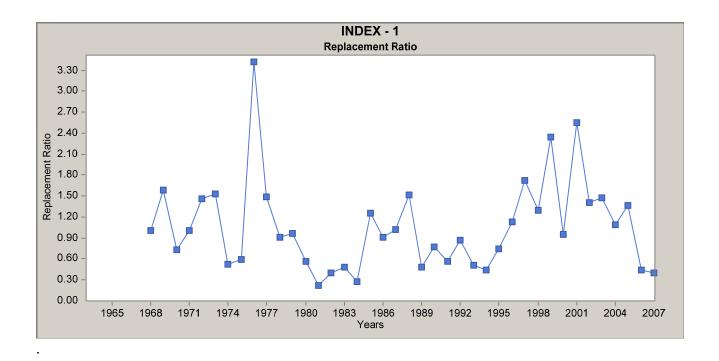


Figure M4. Replacement Ratios for pollock in SA 5&6.

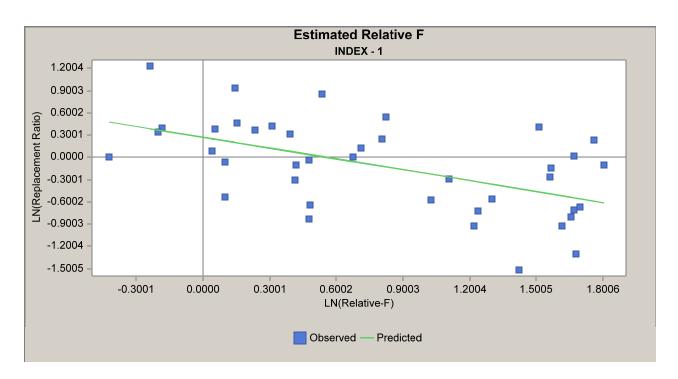


Figure M5. Estimates of Fmsy proxy (1.74) derived from AIM for pollock in SA 5&6.